4.3 Article

Deformability-based flow cytometry

期刊

CYTOMETRY PART A
卷 59A, 期 2, 页码 203-209

出版社

WILEY
DOI: 10.1002/cyto.a.20050

关键词

optical stretcher; cell marker; diagnosis; microfluidics; breast cancer; metastasis; stem cells; RBC; PMN; optical deformability

向作者/读者索取更多资源

Background: Elasticity of cells is determined by their cytoskeleton. Changes in cellular function are reflected in the amount of cytoskeletal proteins and their associated networks. Drastic examples are diseases such as cancer, in which the altered cytoskeleton is even diagnostic. This connection between cellular function and cytoskeletal mechanical properties suggests using the deformability of cells as a novel inherent cell marker. Methods: The optical stretcher is a new laser tool capable of measuring cellular deformability. A unique feature of this deformation technique is its potential for high throughput, with the incorporation of a microfluidic delivery of cells. Results: Rudimentary implementation of the microfluidic optical stretcher has been used to measure optical deformability of several normal and cancerous cell types. A drastic difference has been seen between the response of red blood cells and polymorphonuclear cells for a given optically induced stress. MCF-10, MCF-7, and modMCF-7 cells were also measured, showing that while cancer cells stretched significantly more (five times) than normal cells, optical deformability could even be used to distinguish metastatic cancer cells from nonmetastatic cancer cells. This trimodal distribution was apparent after measuring a mere 83 cells, which shows optical deformability to be a highly regulated cell marker. Conclusions: Preliminary work suggests a deformability based cell sorter similar to current fluorescence-based flow cytometry without the need for specific labeling. This could be used for the diagnosis of all diseases, and the investigation of all cellular processes, that affect the cytoskeleton. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据