4.1 Review

Renal sodium handling for body fluid maintenance and blood pressure regulation

出版社

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/yakushi.124.301

关键词

sodium transport; counter current multiplication; urinary concentration; mendelian hypertension; essential hypertension

向作者/读者索取更多资源

Renal sodium handling is an essential physiologic function in mammal for body fluid maintenance and blood pressure regulation. Recent advances in molecular biology have led to the identification of kidney-specific sodium transporters in the renal tubule, thereby supplying vast information for renal physiology as well as systemic physiology. Renal urinary concentration for body fluid maintenance is accomplished by counter current multiplication in the distal tubule. Sodium transport in the thick ascending limb of Henle (TAL) is the initial process of this system. We have demonstrated that renal urinary concentration is regulated in part by the expression of the Na+-K+-2Cl(-) co-transporter (BSC1) in TAL, by showing two mechanisms of BSC1 expression: pitressin vasopressin (AVP)-dependent and AVP-independent mechanisms. Two additional findings, namely, a lack of the ability to increase BSC1 expression leads to urinary concentrating defect and an enhanced BSC1 expression underlies the edema-forming condition, confirm the close association between sodium handling in TAL and body fluid accumulation. The lines of evidence from our genetic studies of the general Japanese population suggest the importance of mendelian hypertension genes in the genetic investigation of essential hypertension. Because those genes directly or indirectly regulate sodium transport by the Na-Cl co-transporter or the epithelial sodium channel in the distal convoluted tubule to the collecting duct (distal tubular segments after TAL), sodium handling in this part of the renal tubule may be, at least in part, involved in blood pressure regulation. The unveiling of such physiologic roles of sodium handling based on the sodium transporters or on the tubular segments may lead to a better understanding of systemic physiology as well as to the development of novel therapy for body fluid or blood pressure disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据