4.7 Article

Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A

期刊

BLOOD
卷 103, 期 11, 页码 4102-4110

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2003-07-2431

关键词

-

向作者/读者索取更多资源

Efforts to change the fate of human hematopoietic stem cells (HSCs) and progenitor cells (HPCs) in vitro have met with limited success. We hypothesized that previously utilized in vitro conditions might result in silencing of genes required for the maintenance of primitive HSCs/HPCs. DNA methylation and histone deacetylation are components of an epigenetic program that regulates gene expression. Using pharmacologic agents in vitro that might possibly interfere with DNA methylation and histone deacetylation, we attempted to maintain and expand cells with phenotypic and functional characteristics of primitive HSCs/HPCs. Human marrow CD34(+) cells were exposed to a cytokine cocktail favoring differentiation in combination with 5aza 2' deoxycytidine (5azaD) and trichostatin A (TSA), resulting in a significant expansion of a subset of CD34(+) cells that possessed phenotypic properties as well as the proliferative potential characteristic of primitive Hscs/HpCs. In addition, 5azaD- and TSA-pretreated cells but not the CD34(+) cells exposed to cytokines alone retained the ability to repopulate immunodeficient mice. Our findings demonstrate that 5azaD and TSA can be used to alter the fate of primitive HSCs/HPCs during in vitro culture. (C) 2004 by The American Society of Hematology

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据