4.6 Article

Ferromagnetism and temperature-dependent electronic structure of hcp gadolinium

期刊

PHYSICAL REVIEW B
卷 69, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.214412

关键词

-

向作者/读者索取更多资源

We use a combination of a many-body model analysis with an ab initio band-structure calculation to derive the temperature-dependent electronic quasiparticle structure of the rare-earth metal gadolinium. As a local-moment system Gd is properly represented by the ferromagnetic (multiband) Kondo-lattice model [ s-f(d-f) model]. The single-particle part of the model Hamiltonian is taken from an augmented spherical wave band calculation. The proposed method avoids the double counting of relevant interactions by exploiting an exact limiting case of the model and takes into account the correct symmetry of atomic orbitals. The weakly correlated 5d conduction bands become polarized via interband exchange coupling to the localized 4f levels with a distinct temperature dependence. This results in a Rudermann-Kittel-Kasuya-Yosida-type mechanism of coupling leading to the ferromagnetism of Gd. We get a self-consistently derived Curie temperature of 294.1 K and a T=0 moment of 7.71mu(B), surprisingly close to the experimental values. The striking temperature dependence of the 5d conduction bands provides insight into the origin of the temperature dependence of the photoemission data. The only parameter of the theory (interband exchange coupling J) is uniquely fixed by the band calculation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据