4.7 Article

Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential:: distribution and functional activity

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 286, 期 6, 页码 C1443-C1452

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00407.2003

关键词

metastasis; intracellular pH; migration; sodium ion/hydrogen ion exchanger; bicarbonate transport

资金

  1. NHLBI NIH HHS [R01-HL-65695] Funding Source: Medline

向作者/读者索取更多资源

Tumor cells thrive in a hypoxic microenvironment with an acidic extracellular pH. To survive in this harsh environment, tumor cells must exhibit a dynamic cytosolic pH regulatory system. We hypothesize that vacuolar H+-ATPases (V-ATPases) that normally reside in acidic organelles are also located at the cell surface, thus regulating cytosolic pH and exacerbating the migratory ability of metastatic cells. Immunocytochemical data revealed for the first time that V-ATPase is located at the plasma membrane of human breast cancer cells: prominent in the highly metastatic and inconspicuous in the lowly metastatic cells. The V-ATPase activities in isolated plasma membranes were greater in highly than in lowly metastatic cells. The proton fluxes via V-ATPase evaluated by fluorescence spectroscopy in living cells were greater in highly than in lowly metastatic cells. Interestingly, lowly metastatic cells preferentially used the ubiquitous Na+/H+ exchanger and HCO3--based H+-transporting mechanisms, whereas highly metastatic cells used plasma membrane V-ATPases. The highly metastatic cells were more invasive and migratory than the lowly metastatic cells. V-ATPase inhibitors decreased the invasion and migration in the highly metastatic cells. Altogether, these data indicate that V-ATPases located at the plasma membrane are involved in the acquisition of a more metastatic phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据