4.7 Article

4-chloro-benzo[F]isoquinoline (CBIQ) activates CFTR chloride channels and KCNN4 potassium channels in Calu-3 human airway epithelial cells

期刊

BRITISH JOURNAL OF PHARMACOLOGY
卷 142, 期 3, 页码 531-542

出版社

WILEY
DOI: 10.1038/sj.bjp.0705846

关键词

4-chloro-benzo[F]isoquinoline; 7,8-benzoquinoline; 5,6-benzoquinoline; calcium-sensitive potassium channels; cystic fibrosis transmembrane conductance regulator (CFTR); CFTR activators; cystic fibrosis

向作者/读者索取更多资源

1 Calu-3 cells have been used to investigate the actions of 4-chloro-benzo[F]isoquinoline (CBIQ) on short-circuit current (SCC) in monolayers, whole-cell recording from single cells and by patch clamping. 2 CBIQ caused a sustained, reversible and repeatable increase in SCC in Calu-3 monolayers with an EC50 of 4.0 mum. Simultaneous measurements of SCC and isotopic fluxes of Cl-36(-) showed that CBIQ caused electrogenic chloride secretion. 3 Apical membrane permeabilisation to allow recording of basolateral membrane conductance in the presence of a K+ gradient suggested that CBIQ activated the intermediate-conductance calcium-sensitive K+-channel (KCNN4). Permeabilisation of the basolateral membranes of epithelial monolayers in the presence of a Cl- gradient suggested that CBIQ activated the Cl--channel CFTR in the apical membrane. 4 Whole-cell recording in the absence of ATP/GTP of Calu-3 cells showed that CBIQ generated an inwardly rectifying current sensitive to clotrimazole. In the presence of the nucleotides, a more complex I/V relation was found that was partially sensitive to glibenclamide. The data are consistent with the presence of both KCNN4 and CFTR in Calu-3. 5 Isolated inside-out patches from Calu-3 cells revealed clotrimazole-sensitive channels with a conductance of 12pS at positive potentials after activation with CBIQ and demonstrating inwardly rectifying properties, consistent with the known properties of KCNN4. Cell-attached patches showed single channel events with a conductance of 7 pS and a linear I/V relation that were further activated by CBIQ by an increase in open state probability, consistent with known properties of CFTR. It is concluded that CBIQ activates CFTR and KCNN4 ion channels in Calu-3 cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据