4.7 Article

Effects of EGR rates on combustion and emission characteristics in a diesel engine with n-butanol/PODE3-4/diesel blends

期刊

APPLIED THERMAL ENGINEERING
卷 146, 期 -, 页码 212-222

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2018.09.126

关键词

N-butanol/PODE3-4/diesel; EGR; Low-temperature combustion; Emission

资金

  1. Natural Science Foundation of Guangxi [2014GXNSFGA118005]
  2. Natural Science Foundation of China [51076033]
  3. Guangxi Science and Technology Development Plan [AC16380047]

向作者/读者索取更多资源

An experimental investigation is conducted on the influence of EGR (Exhaust Gas Recirculation) rates (0-40%) on the combustion and emission characteristics of n-butanol/diesel/PODE3-4 blends at low-temperature combustion mode in diesel engine. The results show that at identical EGR rate, compared to D100 (diesel fuel), the peak values both of the mean cylinder pressure and the heat release rate of BD20 (20% butanol and 80% diesel in volume) are increased, ignition delay is extended, and the brake thermal efficiency is enhanced. Concerning BD20 blended with PODE3-4, the ignition delay is shortened, while both the brake thermal efficiency and the combustion efficiency increase. At the EGR rate below 30%, as the EGR rate grows, the effects on emission of soot, CO and HC are not significant, while the emission of NOx is sharply reduced; when the EGR rate is above 30%, as it grows, the emissions of soot, CO, and HC drastically rise. As EGR rate grows, the total particulate matter (PM) number concentrations of four fuels firstly decline and then rise, the total PM mass concentrations keep stable firstly and then rise drastically. As the proportion of added PODE3-4 in BD20 grows, the particle geometric mean diameters further decrease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据