4.3 Article

Constrained motion control of flexible robot manipulators based on recurrent neural networks

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCB.2004.826400

关键词

constrained motion; flexible robot manipulators; hybrid position/force control; recurrent neural network

向作者/读者索取更多资源

In this paper, a neural network approach is presented for the motion control of constrained flexible manipulators, where both the contact force exerted by the flexible manipulator and the position of the end-effector contacting with a surface are controlled. The dynamic equations for vibration of flexible link and constrained force are derived. The developed control scheme can adaptively estimate the underlying dynamics of the manipulator using recurrent neural networks (RNNs). Based on the error dynamics of a feedback controller, a learning rule for updating the connection weights of the adaptive RNN model is obtained. Local stability properties of the control system are discussed. Simulation results are elaborated on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics, which show that the designed controller performs remarkably well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据