4.7 Article

Optimum design and experimental study of a thermoelectric ventilator

期刊

APPLIED THERMAL ENGINEERING
卷 67, 期 1-2, 页码 529-539

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2014.03.073

关键词

Thermoelectric; Heat pipe exchangers; Exergy analysis; Working current; COP

资金

  1. International Science and Technology Cooperation [S2009W2052]
  2. National Special Program of International Cooperation and Exchange [2010DFB83650]
  3. China National Science Foundation [51178170]

向作者/读者索取更多资源

Thermoelectric technology was introduced into a ventilator providing an active method for heat recovery from exhaust air out of buildings. This study aims to improve the performance of the thermoelectric ventilator using a heat pipe exchanger. First, a mathematical model is proposed to develop an integrated design method and identify the impact factors of TEM's performance. According to the analysis, the optimal design involving a heat pipe exchanger for improving the performance of the thermoelectric ventilator is conducted. Then, the thermoelectric ventilator is analyzed from energy and exergy perspectives. To identify the working current and estimate the ventilator's performance, a simulation program is established. Accordingly, a series of experiments were conducted to test the ventilator's performance under different weather conditions in summer and winter in Changsha, China. Finally, results are analyzed and discussed from energy and exergy perspectives. It is found that the thermoelectric ventilator can provide sufficient energy for fresh air handling and heat recovery from exhaust air. The maximum Coefficient of Performance (COP) is 4.78 in summer mode and 4.16 in winter mode. It is concluded that the thermoelectric ventilator is adequate for the mild weather conditions. According to the exergy analysis, the largest exergy destruction occurs during the process of energy transfer inside the thermoelectric modules (TEMs). Further study should focus on reducing the working current, improving the performance of TEMs, and increasing heat transfer efficiency of the heat exchangers, especially for those on the hot side of TEMs. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据