4.6 Article

Insights into cardioprotection obtained from study of cellular Ca2+ handling in myocardium of true hibernating mammals

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01096.2003

关键词

woodchuck; cardiac myocyte; calcium current; sarcoplasmic reticulum; action potential; potassium; exchanger

资金

  1. NCRR NIH HHS [RR 16592] Funding Source: Medline
  2. NHLBI NIH HHS [HL 63020, HL 61476, HL 59139, HL 33107] Funding Source: Medline
  3. NIA NIH HHS [AG 14121] Funding Source: Medline

向作者/读者索取更多资源

Mammalian hibernators exhibit remarkable resistance to low body temperature, whereas nonhibernating (NHB) mammals develop ventricular dysfunction and arrhythmias. To investigate this adaptive change, we compared contractile and electrophysiological properties of left ventricular myocytes isolated from hibernating (HB) woodchucks (Marmota monax) and control NHB woodchucks. The major findings of this study were the following: 1) the action potential duration in HB myocytes was significantly shorter than in NHB myocytes, but the amplitude of peak contraction was unchanged; 2) HB myocytes had a 33% decreased L-type Ca2+ current (I-Ca) density and twofold faster I-Ca inactivation but no change in the current-voltage relationship; 3) there were no changes in the density of inward rectifier K+ current, transient outward K+ current, or Na+/Ca2+ exchange current, but HB myocytes had increased sarcoplasmic reticulum Ca2+ content as estimated from caffeine-induced Na+/Ca2+ exchange current values; 4) expression of the L-type Ca2+ channel alpha(1C)-subunit was decreased by 30% in HB hearts; and 5) mRNA and protein levels of sarco(endo) plasmic reticulum Ca2+-ATPase 2a (SERCA2a), phospholamban, and the Na+/Ca2+ exchanger showed a pattern that is consistent with functional measurements: SERCA2a was increased and phospholamban was decreased in HB relative to NHB hearts with no change in the Na+/Ca2+ exchanger. Thus reduced Ca2+ channel density and faster I-Ca inactivation coupled to enhanced sarcoplasmic reticulum Ca2+ release may underlie shorter action potentials with sustained contractility in HB hearts. These changes may account for natural resistance to Ca2+ overload-related ventricular dysfunction and point to an important cardioprotective mechanism during true hibernation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据