4.5 Article

Creation of polymerizable species in plasma polymerization

期刊

PLASMA CHEMISTRY AND PLASMA PROCESSING
卷 24, 期 2, 页码 325-351

出版社

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1023/B:PCPP.0000013204.17559.72

关键词

plasma polymerization; plasma CVD; plasma enhanced CVD; plasma assisted CVD; plasma glow; low-pressure glow discharge

向作者/读者索取更多资源

Plasma polymerization of trimethylsilane (TMS) was carried out and investigated in a direct current (dc) glow discharge. The formation of TMS plasma glow was carefully examined with optical photography as compared with an Ar dc glow discharge. It was found that there exists a significant difference in the nature of glow and how the glow is created in TMS glow discharge, which polymerizes or causes deposition, and that of monatomic gas such as Ar, which does not polymerize or deposit. In dc Ar discharge, the negative glow, which is the most luminous zone in the discharge, develops in a distinctive distance away from the cathode surface, and the cathode remains in the dark space. In a strong contrast to this situation, in TMS dc discharge, the primary glow that is termed as cathode-glow in this paper appears at cathode surface, while a much weaker negative glow as a secondary glow was observed at the similar location to where the Ar negative glow appears. The deposition results of plasma polymers and gas phase composition data of TMS in a closed reactor acquired by ellipsometry and residual gas analyzer (RGA) measurements clearly indicated that the cathode-glow in TMS glow discharge is mainly associated with chemically reactive species that would polymerize or form deposition, but the negative glow is related to species from simple gases that would not polymerize or deposit. Based on the glow location with respect to the cathode, it was deduced that the cathode-glow is due to photon emitting species created by molecular dissociation of the monomer that is caused by low energy electrons emanating from the cathode surface. The negative glow is due to the ionization and the formation of excited neutrals of fragmented atoms caused by high-energy electrons. Polymerizable species that would cause deposition of material ( plasma polymers) are created mainly by the fragmentation of monomer molecules by low energy electrons, but not by electron-impact ionization of the monomer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据