4.7 Article

Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development

期刊

DEVELOPMENT
卷 131, 期 12, 页码 2911-2920

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.01177

关键词

NLK; Wg; wing development

向作者/读者索取更多资源

The cellular events that govern patterning during animal development must be precisely regulated. This is achieved by extrinsic factors and through the action of both positive and negative feedback loops. Wnt/Wg signals are crucial across species in many developmental patterning events. We report that Drosophila nemo (nmo) acts as an intracellular feedback inhibitor of Wingless (Wg) and that it is a novel Wg target gene. Nemo antagonizes the activity of the Wg signal, as evidenced by the finding that reduction of nmo rescues the phenotypic defects induced by misexpression of various Wg pathway components. In addition, the activation of Wg-dependent gene expression is suppressed in wing discs ectopically expressing nmo and enhanced cell autonomously in nmo mutant clones. We find that nmo itself is a target of Wg signaling in the imaginal wing disc. nmo expression is induced upon high levels of Wg signaling and can be inhibited by interfering with Wg signaling. Finally, we observe alterations in Arm stabilization upon modulation of Nemo. These observations suggest that the patterning mechanism governed by Wg involves a negative feedback circuit in which Wg induces expression of its own antagonist Nemo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据