4.7 Article

Trends in the band structures of the group-I and -II oxides

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 120, 期 22, 页码 10799-10806

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1738635

关键词

-

向作者/读者索取更多资源

Measured and calculated band structures for the six lightest group-I and -II oxides are reported. Band structures have been measured using electron momentum spectroscopy, a technique that maps the ground-state occupied orbitals resolved both in energy and momentum. Measurements are compared with first-principles calculations carried out within the linear combination of atomic orbitals approximation using both Hartree-Fock (HF) and density functional (DFT) methods. Three DFT functionals are used representative of the local density approximation, the generalized gradient approximation, and a hybrid method incorporating exact exchange. The calculated O 2p bandwidths and O 2p-2s band gaps generally scale linearly with the inverse of the oxygen-oxygen separation squared, but consistently show an anomaly at Li2O. These trends, including the anomaly, are also observed in the experimental data. HF calculations consistently overestimate the oxygen 2p-2s band gap by almost a factor of two. Measured band gaps lie within the range of the three DFT functionals employed, with evidence that the description of exchange becomes more important as the cation size increases. Both HF and DFT calculations overestimate the oxygen valence bandwidths, with DFT giving more accurate predictions. Both observed and calculated bandwidths converge as the cation size increases, indicating that exchange-correlation effects become less important as the metallic ion becomes larger. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据