4.6 Article

The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 24, 页码 25729-25744

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M401172200

关键词

-

资金

  1. NCI NIH HHS [1R01 CA095461-01A2] Funding Source: Medline

向作者/读者索取更多资源

High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of the tumor suppressor p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that E6 can protect cells from tumor necrosis factor-induced apoptosis by binding to the C-terminal end of tumor necrosis factor R1, thus blocking apoptotic signal transduction. In this study, E6 was shown to also protect cells from apoptosis induced via the Fas pathway. Furthermore, use of an inducible E6 expression system demonstrated that this protection is dose-dependent, with higher levels of E6 leading to greater protection. Although E6 suppresses activation of both caspase 3 and caspase 8, it does not affect apoptotic signaling through the mitochondrial pathway. Mammalian two-hybrid and in vitro pull-down assays were then used to demonstrate that E6 binds directly to the death effector domain of Fas-associated death domain (FADD), with deletion and site-directed mutants enabling the localization of the E6-binding site to the N-terminal end of the FADD death effector domain. E6 is produced in two forms as follows: a full-length version of similar to16 kDa and a smaller version of about half that size corresponding to the N-terminal half of the full-length protein. Pull-down and functional assays demonstrated that the full-length version, but not the small version of E6, was able to bind to FADD and to protect cells from Fas-induced apoptosis. In addition, binding to E6 leads to degradation of FADD, with the loss of cellular FADD proportional to the amount of E6 expressed. These results support a model in which E6-mediated degradation of FADD prevents transmission of apoptotic signals via the Fas pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据