4.6 Article

Generation and adaptation of computational surface meshes from discrete anatomical data

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.992

关键词

mesh generation; mesh adaptation; surface mesh; simplification; decimation; metric; a posteriori error estimate; biomedical data; reverse engineering

向作者/读者索取更多资源

Fast and accurate scanning devices are nowadays widely used in many engineering and biomedical fields. The resulting discrete data is usually directly converted into polygonal surface meshes, using 'brute-force' algorithms, often resulting in meshes that may contain several millions of polygons. Simplification is therefore required in order to make storage, computation and display possible if not efficient. In this paper, we present a general scheme for mesh simplification and optimization that allows to control the geometric approximation as well as the element shape and size quality (required for numerical simulations). Several examples ranging from academic to complex biomedical geometries (organs) are presented to illustrate the efficiency and the utility of the proposed approach. Copyright (C) 2004 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据