4.7 Article

The influence of loading rate and concurrent microstructural evolution in micrometric talc- and wollastonite-reinforced high isotactic polypropylene composites

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2004.03.035

关键词

polypropylene composites; microstucture; deformation; loading rate

向作者/读者索取更多资源

The paper describes the response of neat high isotactic polypropylene (iPP) and talc (iPP-T) and wollastonite (iPP-W)-reinforced polypropylenes to tensile loading rate and the evolution of microstructure during plastic deformation. Unreinforced and reinforced polypropylene materials exhibit significant sensitivity to tensile loading rate (strain rate) and the change in strain rate sensitivity index parameter with strain signifies a change in the micromechanism of plastic deformation and mode of fracture. Plastic deformation in neat high isotactic polypropylene is characterized by craze-tearing and brittle mode of fracture, while both talc- and wollastonite-reinforced polypropylenes are characterized by wedge, ridge-tearing, fibrillation, and brittle fracture. The brittle fracture is associated with debonding of mineral particles from the polypropylene matrix. However, yield stress of all the three materials exhibit similar dependence to loading rate and similar activation volume that suggests similarity in the onset of plastic deformation process. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据