4.6 Article

Coupling in silico and in vitro analysis of peptide-MHC binding: A bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes

期刊

JOURNAL OF IMMUNOLOGY
卷 172, 期 12, 页码 7495-7502

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.172.12.7495

关键词

-

向作者/读者索取更多资源

The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据