4.5 Article

Carbohydrates act as sorting determinants in ER-associated degradation of tyrosinase

期刊

JOURNAL OF CELL SCIENCE
卷 117, 期 14, 页码 2937-2949

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.01154

关键词

N-linked glycans; quality control; molecular chaperones; protein aggregation

资金

  1. NCI NIH HHS [CA44542, CA79864] Funding Source: Medline
  2. NIAMS NIH HHS [AR41942] Funding Source: Medline

向作者/读者索取更多资源

The endoplasmic reticulum (ER) quality-control machinery maintains the fidelity of the maturation process by sorting aberrant proteins for ER-associated protein degradation (ERAD), a process requiring retrotranslocation from the ER lumen to the cytosol and degradation by the proteasome. Here, we assessed the role of N-linked glycans in ERAD by monitoring the degradation of wild-type (Tyr) and albino mutant (Tyr(C85S)) tyrosinase. Initially, mutant tyrosinase was established as a genuine ERAD substrate using intact melanocyte and semi-permeabilized cell systems. Inhibiting mannose trimming or accumulating Tyr(C85S) in a monoglucosylated form led to its stabilization, supporting a role for lectin chaperones in ER retention and proteasomal degradation. In contrast, ablating the lectin chaperone interactions by preventing glucose trimming caused a rapid disappearance of tyrosinase, initially due to the formation of protein aggregates, which were subsequently degraded by the proteasome. The colocalization of aggregated tyrosinase with protein disulfide isomerase and BiP, but not calnexin, supports an ER organization, which aids in protein maturation and degradation. Based on these studies, we propose a model of tyrosinase degradation in which interactions between N-linked glycans and lectin chaperones help to minimize tyrosinase aggregation and also target non-native substrates for retro-translocation and subsequent degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据