4.4 Article

The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis

期刊

DEVELOPMENTAL BIOLOGY
卷 270, 期 2, 页码 290-307

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2004.02.010

关键词

fragile X syndrome; fertility; axoneme microtubule; RNA binding protein; translational regulation; proteomics

资金

  1. NICHD NIH HHS [HD40654] Funding Source: Medline

向作者/读者索取更多资源

Macroorchidism (i.e., enlarged testicles) and mental retardation are the two hallmark symptoms of Fragile X syndrome (FraX). The disease is caused by loss of fragile X mental retardation protein (FMRP), an RNA-binding translational regulator. We previously established a FraX model in Drosophila, showing that the fly FMRP homologue, dFXR, acts as a negative translational regulator of microtubule-associated Futsch to control stability of the microtubule cytoskeleton during nervous system development. Here, we investigate dFXR function in the testes. Male dfxr null mutants have the enlarged testes characteristic of the disease and are nearly sterile (>90% reduced male fecundity). dFXR protein is highly enriched in Drosophila testes, particularly in spermatogenic cells during the early stages of spermatogenesis. Cytological analyses reveal that spermatogenesis is arrested specifically in late-stage spermatid differentiation following individualization. Ultrastructurally, dfxr mutants lose specifically the central pair microtubules in the sperm tail axoneme. The frequency of central pair micrombule loss becomes progressively greater as spermatogenesis progresses, suggesting that dFXR regulates microtubule stability. Proteomic analyses reveal that chaperomes Hsp60B-, Hsp68-, Hsp90-related protein TRAP1, and other proteins have altered expression in dfxr mutant testes. Taken together with our previous nervous system results, these data suggest a common model in which dFXR regulates microtubule stability in both synaptogenesis in the nervous system and spermatogenesis in the testes. The characterization of dfxr function in the testes paves the way to genetic screens for modifiers of dfxr-induced male sterility, as a means to efficiently dissect FMRP-mediated mechanisms. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据