4.8 Article

A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 23, 页码 7206-7211

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja049195r

关键词

-

资金

  1. NCI NIH HHS [N01-CO37122] Funding Source: Medline

向作者/读者索取更多资源

A trifluoroethylester-terminal poly(ethylene glycol) (PEG) silane was synthesized and self-assembled on iron oxide nanoparticles. The nanoparticle system thus prepared has the flexibility to conjugate with cell targeting agents via either carboxylic or amine terminal groups for a number of biomedical applications, including magnetic resonance imaging (MRI) and controlled drug delivery. The trifluoroethylester silane was synthesized by modifying a PEG diacid to form the corresponding bistrifluoroethylester (TFEE), followed by a reaction with 3-aminopropyltriethoxysilane (APS). The APE; coupled with PEG chains confers the stability of PEG self-assembled monolayers (SAMs) and increases the PEG packing density on nanoparticles by establishing hydrogen bonding between the carbonyl and amine groups present within the monolayer structure. The success of the synthesis of the PEG TEFE silane was confirmed with H-1 NMR and Fourier transform infrared spectroscopy (FTIR). The conjugating flexibility of the PEG TEFE was demonstrated with folic acid that had carboxylic acid groups and amine terminal groups, respectively, and was confirmed by FTIR. TEM analysis showed the well-dispersed nanoparticles before and after they were coated with PEG and folic acid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据