4.7 Article

Optimization of photocatalytic oxidation of 2,2′,3,3′-tetrachlorobiphenyl

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 109, 期 1-3, 页码 149-155

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2004.03.006

关键词

photocatalytic oxidation; polychlorinated biphenyl; optimal conditions

向作者/读者索取更多资源

Polychlorinated biphenyls (PCBs) are wide spread environmental pollutants. This research focused the optimum physico-chemical conditions under which photocatalytic oxidation (PCO) can be used to degrade 2,2',3,3'-tetrachlorobiphenyl (tetra-CB). Among the optimal physico-chemical conditions studied were UV intensity, hydrogen peroxide (H2O2) and titanium dioxide (TiO2) concentrations, initial pH, and possible reaction intermediates were also determined. The results indicate that the optimal physico-chemical conditions necessary for the degradation of tetra-CB by PCO were UV intensity at 3.16 mW/cm(2), 30 mM of H2O2 and 100 mg/l of TiO2. In contrast to the results of PCO studies on other organic compounds, the optimum pH for PCO degradation of tetra-CB was 5.5. The removal efficiency was also higher under acidic conditions than alkaline conditions. Although degradation intermediates such as 1,3-bis(1,1-dimethylethyl)benzene, 2,4-bis(1,1-dimethylethyl)phenol, and 3,5-di-tert-butyl-4-hydroxybenzaldehyde were identified at an early stage in the reaction process, they were not completely degraded even after 7 h of PCO reaction. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据