4.8 Article

Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25

期刊

MOLECULAR CELL
卷 14, 期 6, 页码 753-762

出版社

CELL PRESS
DOI: 10.1016/j.molcel.2004.05.017

关键词

-

资金

  1. NIGMS NIH HHS [GM54098, GM64503, GM59849A, GM066661, GM25232] Funding Source: Medline

向作者/读者索取更多资源

21 amino acid peptide Microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). MccJ25-resistance mutations cluster in the RNAP secondary channel through which incoming NTP substrates are thought to reach the catalytic center and the 3' end of the nascent RNA is likely to thread in backtracked transcription complexes. The secondary channel also accepts transcript cleavage factors GreA and GreB. Here, we demonstrate that MccJ25 inhibits GreA/GreB-dependent transcript cleavage, impedes formation of backtracked complexes, and can be crosslinked to the X-end of the nascent RNA in elongation complexes. These results place the MccJ25 binding site within the secondary channel. Moreover, single-molecule assays reveal that MccJ25 binding to a transcribing RNAP temporarily stops transcript elongation but has no effect on the elongation velocity between pauses. Kinetic analysis of single-molecule data allows us to put forward a model of transcription inhibition by MccJ25 that envisions the complete occlusion of the secondary channel by bound inhibitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据