4.6 Article

Biosensing properties of diamond and carbon nanotubes

期刊

LANGMUIR
卷 20, 期 13, 页码 5484-5492

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la0490947

关键词

-

向作者/读者索取更多资源

The biochemical properties of boron-doped diamond (BDD), carbon nanofiber, fullerene, and multiwalled carbon nanotube (MWCNT) electrodes have been investigated comparatively. Physiochemical factors which affect the biosensing properties such as surface hydrophobicities, effective surface area, and intrinsic material properties are studied. Voltammetric responses of the as-grown thin film electrode and surface-modified electrode to biomolecules such as L-ascorbic acid (L-AA), dopamine (DA), and uric acid are examined. As-grown MWCNT electrodes exhibit selective voltammetric responses to the different biomolecules and faster electron-transfer kinetics compared to BDD. The selective response is due to the considerably lower anodic potential of L-AA on MWCNT (-48 mVvs Ag/AgCl compared to 575 mV on BDD). This electrocatalytic response can be replicated on a nonselective carbon nanofiber electrode by coating it with gold nanoparticles. BDD has no intrinsic selective response to L-AA, and surface modification by anodic polarization is necessary for resolving L-AA and DA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据