4.8 Article

Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system

期刊

NATURE
卷 429, 期 6994, 页码 878-883

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02618

关键词

-

向作者/读者索取更多资源

In cultures of hippocampal neurons, induction of long-term synaptic potentiation or depression by repetitive synaptic activity is accompanied by a retrograde spread of potentiation or depression, respectively, from the site of induction at the axonal outputs to the input synapses on the dendrites of the presynaptic neuron(1,2). We report here that rapid retrograde synaptic modification also exists in an intact developing retinotectal system. Local application of brain-derived neurotrophic factor ( BDNF) to the Xenopus laevis optic tectum, which induced persistent potentiation of retinotectal synapses, led to a rapid modification of synaptic inputs at the dendrites of retinal ganglion cells (RGCs), as shown by a persistent enhancement of light-evoked excitatory synaptic currents and spiking activity of RGCs. This retrograde effect required TrkB receptor activation, phospholipase Cgamma activity and Ca2+ elevation in RGCs, and was accounted for by a selective increase in the number of postsynaptic AMPA-subtype glutamate receptors at RGC dendrites. Such retrograde information flow in the neuron allows rapid regulation of synaptic inputs at the dendrite in accordance to signals received at axon terminals, a process reminiscent of back-propagation algorithm for learning in neural networks(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据