4.8 Article

Reliable first-principles alloy thermodynamics via truncated cluster expansions

期刊

PHYSICAL REVIEW LETTERS
卷 92, 期 25, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.92.255702

关键词

-

向作者/读者索取更多资源

In alloys cluster expansions (CE) are increasingly used to combine first-principles electronic-structure calculations and Monte Carlo methods to predict thermodynamic properties. As a basis-set expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well defined and did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets that provides reliable thermodynamics. We then exemplify its importance in Ni3V, where the CE has failed unpredictably, and now show agreement to a range of measured values, predict new low-energy structures, and explain the cause of previous failures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据