4.7 Article

Expression of mutant p193 and p53 permits cardiomyocyte cell cycle reentry after myocardial infarction in transgenic mice

期刊

CIRCULATION RESEARCH
卷 94, 期 12, 页码 1606-1614

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000132279.99249.f4

关键词

cardiomyocyte proliferation; apoptosis; DNA synthesis; heart regeneration

向作者/读者索取更多资源

Previous studies have demonstrated that expression of p193 and p53 mutants with dominant-interfering activities renders embryonic stem cell-derived cardiomyocytes responsive to the growth promoting activities of the E1A viral oncoproteins. In this study, the effects of p53 and p193 antagonization on cardiomyocyte cell cycle activity in normal and infarcted hearts were examined. Transgenic mice expressing the p193 and/or the p53 dominant-interfering mutants in the heart were generated. Transgene expression had no effect on cardiomyocyte cell cycle activity in uninjured adult hearts. In contrast expression of either transgene resulted in a marked induction of cardiomyocyte cell cycle activity at the infarct border zone at 4 weeks after permanent coronary artery occlusion. Expression of the p193 dominant-interfering mutant was also associated with an induction of cardiomyocyte DNA synthesis in the interventricular septa of infarcted hearts. A concomitant and marked reduction in hypertrophic cardiomyocyte growth was observed in the septa of hearts expressing the p193 dominant-interfering transgene, suggesting that cell cycle activation might partially counteract the adverse ventricular remodeling that occurs after infarction. Collectively these data suggest that antagonization of p193 and p53 activity relaxes the otherwise stringent regulation of cardiomyocyte cell cycle reentry in the injured adult heart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据