4.4 Article

Long-term potentiation of intrinsic excitability in LV visual cortical neurons

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 92, 期 1, 页码 341-348

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01059.2003

关键词

-

资金

  1. NEI NIH HHS [EY-01449] Funding Source: Medline
  2. NINDS NIH HHS [NS-36853] Funding Source: Medline

向作者/读者索取更多资源

Neuronal excitability has a large impact on network behavior, and plasticity in intrinsic excitability could serve as an important information storage mechanism. Here we ask whether postsynaptic excitability of layer V pyramidal neurons from primary visual cortex can be rapidly regulated by activity. Whole cell current-clamp recordings were obtained from visual cortical slices, and intrinsic excitability was measured by recording the firing response to small depolarizing test pulses. Inducing neurons to fire at high-frequency ( 30 - 40 Hz) in bursts for 5 min in the presence of synaptic blockers increased the firing rate evoked by the test pulse. This long-term potentiation of intrinsic excitability (LTP-IE) lasted for as long as we held the recording ( > 60 min). LTP-IE was accompanied by a leftward shift in the entire frequency versus current (F-I) curve and a decrease in threshold current and voltage. Passive neuronal properties were unaffected by the induction protocol, indicating that LTP-IE occurred through modification in voltage-gated conductances. Reducing extracellular calcium during the induction protocol, or buffering intracellular calcium with bis-(o-aminophenoxy)-N, N, N', N'-tetraacetic acid, prevented LTP-IE. Finally, blocking protein kinase A (PKA) activation prevented, whereas pharmacological activation of PKA both mimicked and occluded, LTP-IE. This suggests that LTP-IE occurs through postsynaptic calcium influx and subsequent activation of PKA. Activity-dependent plasticity in intrinsic excitability could greatly expand the computational power of individual neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据