4.8 Review

Mode-coupling theory and the glass transition in supercooled liquids

期刊

REVIEWS OF MODERN PHYSICS
卷 76, 期 3, 页码 785-851

出版社

AMER PHYSICAL SOC
DOI: 10.1103/RevModPhys.76.785

关键词

-

向作者/读者索取更多资源

Mode-coupling theory is an approach to the study of complex behavior in the supercooled liquids which developed from the idea of a nonlinear feedback mechanism. From the coupling of slowly decaying correlation functions the theory predicts the existence of a characteristic temperature T-c above the experimental glass transition temperature T-g for the liquid. This article discusses the various methods used to obtain the model equations and illustrates the effects of structure on dynamics and scaling behavior over different time scales using a wave-vector-dependent model. It compares the theoretical predictions, experimental observations, and computer simulation results, and also considers phenomenological extensions of mode-coupling theory. Numerical solutions of the model equations to study the dynamics from a nonperturbative approach are also reviewed. The review looks briefly at recent observations from landscape studies of model systems of structural glasses and their relation to the mode-coupling temperature T-c. The equations for the mean-field dynamics driven by the p-spin interaction Hamiltonian are similar to those of mode-coupling theory for structural glasses. Related developments in the nonequilibrium dynamics and generalization of the fluctuation-dissipation relation for the structural glasses are briefly touched upon. The review ends with a summary of the open questions and possible future direction of the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据