4.7 Article

Shape from moments - An estimation theory perspective

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 52, 期 7, 页码 1814-1829

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2004.828919

关键词

array processing; eigenvalue; estimation; inverse problem; matrix pencil; moments; prior information; prony; quadrature; reconstruction; shape

向作者/读者索取更多资源

This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据