4.4 Article

Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation

期刊

JOURNAL OF BACTERIOLOGY
卷 186, 期 14, 页码 4596-4604

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.186.14.4596-4604.2004

关键词

-

向作者/读者索取更多资源

Denitrification and arginine fermentation are central metabolic processes performed by the opportunistic pathogen Pseudomonas aeruginosa during biofilm formation and infection of lungs of patients with cystic fibrosis. Genome-wide searches for additional components of the anaerobic metabolism identified potential genes for pyruvate-metabolizing NADH-dependent lactate dehydrogenase (ldhA), phosphotransacetylase (pta), and acetate kinase (ackA). While pyruvate fermentation alone does not sustain significant anaerobic growth of P. aeruginosa, it provides the bacterium with the metabolic capacity for long-term survival of up to 18 days. Detected conversion of pyruvate to lactate and acetate is dependent on the presence of intact ldhA and ackA-pta loci, respectively. DNA microarray studies in combination with reporter gene fusion analysis and enzyme activity measurements demonstrated the anr- and ihfA-dependent anaerobic induction of the ackA-pta promoter. Potential Anr and integration host factor binding sites were localized. Pyruvate-dependent anaerobic long-term survival was found to be significantly reduced in am, and ihfA mutants. No obvious ldhA regulation by oxygen tension was observed. Pyruvate fermentation is pH dependent. Nitrate respiration abolished pyruvate fermentation, while arginine fermentation occurs independently of pyruvate utilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据