4.6 Article

Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions

期刊

PHYSICAL REVIEW B
卷 70, 期 3, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.035114

关键词

-

向作者/读者索取更多资源

The multiorbital Hubbard model is expressed in terms of quantum phase variables (slave rotors) conjugate to the local charge, and of auxiliary fermions, providing an economical representation of the Hilbert space of strongly correlated systems. When the phase variables are treated in a local mean-field manner, similar results to the dynamical mean-field theory are obtained, namely a Brinkman-Rice transition at commensurate fillings together with a preformed Mott gap in the single-particle density of states. The slave-rotor formalism allows to go beyond the local description and take into account spatial correlations, following an analogy to the superfluid-insulator transition of bosonic systems. We find that the divergence of the effective mass at the metal-insulator transition is suppressed by short range magnetic correlations in finite-dimensional systems. Furthermore, the strict separation of energy scales between the Fermi-liquid coherence scale and the Mott gap, found in the local picture, holds only approximately in finite dimensions, due to the existence of low-energy collective modes related to zero-sound.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据