3.8 Article

Biosynthesis of isoprenoids -: A bifunctional IspDF enzyme from Campylobacter jejuni

期刊

EUROPEAN JOURNAL OF BIOCHEMISTRY
卷 271, 期 14, 页码 3028-3035

出版社

WILEY
DOI: 10.1111/j.1432-1033.2004.04234.x

关键词

bifunctional enzyme; biosynthetic pathway; isoprenoid; NMR; nonmevalonate

向作者/读者索取更多资源

In the nonmevalonate pathway of isoprenoid biosynthesis, the conversion of 2C-methyl-D-erythritol 4-phosphate into its cyclic diphosphate proceeds via nucleotidyl intermediates and is catalyzed by the products of the ispD, ispE and ispF genes. An open reading frame of Campylobacter jejuni with similarity to the ispD and ispF genes of Escherichia coli was cloned into an expression vector directing the formation of a 42 kDa protein in a recombinant E. coli strain. The purified protein was shown to catalyze the transformation of 2C-methyl-D-erythritol 4-phosphate into 4-diphosphocytidyl-2C-methyl-D-erythritol and the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate at catalytic rates of 19 mumol.mg(-1).min(-1) and 7 mumol.mg(-1).min(-1), respectively. Both enzyme-catalyzed reactions require divalent metal ions. The C. jejuni enzyme does not catalyze the formation of 2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol, a side reaction catalyzed in vitro by the IspF proteins of E. coli and Plasmodium falciparum. Comparative genomic analysis show that all sequenced alpha- and epsilon-proteobacteria have fused ispDF genes. These bifunctional proteins are potential drug targets in several human pathogens (e.g. Helicobacter pylori, C. jejuni and Treponema pallidum).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据