4.7 Article

Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application

期刊

APPLIED SURFACE SCIENCE
卷 305, 期 -, 页码 359-365

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2014.03.090

关键词

TiO2 flower rod; Hydrothermal method; Mn-doped CdS quantum dots; Solar cells

资金

  1. Key Project of Tianjin Sci-Tech [08ZCKFSH01400]

向作者/读者索取更多资源

A double-layered TiO2 film which three dimensional (3D) flowers grown on highly ordered self-assembled one dimensional (1D) TiO2 nanorods was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The 3D TiO2 flowers with the increased surface areas can adsorb more QDs, which increased the absorption of light; meanwhile 1D TiO2 nanorods beneath the flowers offered a direct electrical pathway for photogenerated electrons, accelerating the electron transfer rate. A typical type II band alignment which can effectively separate photogenerated excitons and reduce recombination of electrons and holes was constructed by Mn-doped CdS QDs and TiO2 flower-rod. The incident photon-to-current conversion efficiency (IPCE) of the Mn-doped CdS/TiO2 flower-rod solar cell reached to 40% with the polysulfide electrolyte filled in the solar cell. The power conversion efficiency (PCE) of 1.09% was obtained with the Mn-doped CdS/TiO2 flower-rod solar cell under one sun illumination (AM 1.5G, 100 mW/cm2), which is 105.7% higher than that of the CdS/TiO2 nanorod solar cell (0.53%). 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据