4.6 Article

Maternal nutrient restriction alters gene expression in the ovine fetal heart

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 558, 期 1, 页码 111-121

出版社

WILEY
DOI: 10.1113/jphysiol.2004.061697

关键词

-

资金

  1. NCRR NIH HHS [1P20RR16474-01, P20 RR016474] Funding Source: Medline
  2. NICHD NIH HHS [P01 HD021350, HD21350] Funding Source: Medline

向作者/读者索取更多资源

Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, a-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac a-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据