4.5 Article

Correlation-based decomposition of surface electromyograms at low contraction forces

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/BF02350989

关键词

surface electromyography; compound signal decomposition; reconstruction of motor-unit firing patterns; extraction of motor-unit action potentials; correlation-based decomposition

向作者/读者索取更多资源

The paper studies a surface electromyogram (SEMG) decomposition technique suitable for identification of complete motor unit (MU) firing patterns and their motor unit action potentials (MUAPs) during low-level isometric voluntary muscle contractions. The algorithm was based on a correlation matrix of measurements, assumed unsynchronised (uncorrelated) MU firings, exhibited a very low computational complexity and resolved the superimposition of MUAPs. A separation index was defined that identified the time instants of an MU's activation and was eventually used for reconstruction of a complete MU innervation pulse train. In contrast with other decomposition techniques, the proposed approach worked well also when the number of active MU's was slightly underestimated, if the MU firing patterns partly overlapped and if the measurements were noisy. The results on synthetic SEMG show 100% accuracy in the detection of innervation pulses down to a signal-to-noise ratio (SNR) of 10dB, and 93 +/- 4.6% (mean standard deviation) accuracy with 0dB additive noise. In the case of real SEMG, recorded with an array of 61 electrodes from biceps brachii of five subjects at 10% maximum voluntary contraction, seven active MUs with a mean firing rate of 14.1 Hz were identified on average.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据