3.8 Review

Rubella virus and birth defects: Molecular insights into the viral teratogenesis at the cellular level

出版社

WILEY
DOI: 10.1002/bdra.20045

关键词

-

向作者/读者索取更多资源

BACKGROUND: In utero rubella virus (RV) infection of a fetus can result in birth defects that are often collectively referred to as congenital rubella syndrome (CRS). In extreme cases, fetal death can occur. In spite of the availability of a safe and effective vaccine against rubella, recent worldwide estimates are that more than 100,000 infants are born with CRS annually. RECENT PROGRESS: Recently, several significant findings in the field of cell biology, as well as in the RV replication and virus-cell interactions, have originated from the authors' laboratory, and other researchers have provided insights into RV teratogenesis. It has been shown that 1) an RV protein induces cell-cycle arrest by generating a subpopulation. of tetraploid nuclei (i.e., 4N DNA) cells, perhaps representative of the tetraploid state following S phase in the cell cycle, due to its interaction with citron-K kinase (CK); 2) RV infection induces apoptosis in cell culture, and 3) CK functional perturbations lead to tetraploidy, followed by apoptosis, in specific cell types. CONCLUSIONS: Based on several similarities between known RV-associated fetal and cellular manifestations and CK deficiency-associated phenotypes, it is reasonable to postulate that P90-CK interaction in RV-infected cells interferes with CK function and induces cell-cycle arrest following S phase in a subpopulation, perhaps representative of tetraploid stage, which could lead to subsequent apoptosis in RV infection. Taking all these observations to the fetal organogenesis level, it is plausible that P90-CK interaction could perhaps be one of the initial steps in RV infection-induced apoptosis-associated fetal birth defects in utero. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据