4.7 Article

Application of Monte Carlo algorithms to the Bayesian analysis of the cosmic microwave background

期刊

ASTROPHYSICAL JOURNAL
卷 609, 期 1, 页码 1-14

出版社

IOP PUBLISHING LTD
DOI: 10.1086/383515

关键词

cosmic microwave background; methods : data analysis; methods : statistical

向作者/读者索取更多资源

Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB). We develop a Monte Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an identity for the Bayesian posterior as a marginalization over unknowns, and maximization of the posterior involves the computation of expectation values as a sample average from maps of the cosmic microwave background and foregrounds given some current estimate of the power spectrum or cosmological model, as well as some assumed statistical characterization of the foregrounds. Maps of the CMB and foregrounds are sampled by a linear transform of a Gaussian white-noise process, implemented numerically with conjugate gradient descent. For time series data with N-t samples and N pixels on the sphere, the method has a computational expense KO(N-2 + N-t log N-t), where K is a prefactor determined by the convergence rate of conjugate gradient descent. Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed, region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据