4.3 Article

Optimal design of composite channels using genetic algorithm

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9437(2004)130:4(286)

关键词

channel design; optimization; algorithms; composite structures

向作者/读者索取更多资源

In the past, studies involving optimal design of composite channels have employed Horton's equivalent roughness coefficient, which uses a lumped approach in assuming constant velocity across a composite channel cross section. In this paper, a new nonlinear optimization program (NLOP) is proposed based on a distributed approach that is equivalent to Lotter's observations, which allows spatial variations in velocity across a composite channel cross section. The proposed NLOP, which consists of an objective function of minimizing total construction cost per unit length of a channel, is solved using genetic algorithm (GA). Several scenarios are evaluated, including no restrictions, restricted top width, and restricted channel side slopes, to account for certain site conditions. In addition, the proposed NLOP is modified to include constraints on maximum permissible velocities corresponding to different lining materials of the composite channel cross section, probably for the first time. The proposed methodology is applied to trapezoidal and triangular channel cross sections but can be easily extended to other shapes or compound channels. Optimal design graphs are presented to determine the channel dimensions of a composite trapezoidal channel cross section. The results obtained in this study indicate that cost savings up to 35% can be achieved for the unconstrained velocity case and up to 55% for the limiting velocity case when the proposed NLOP is solved using GA as compared with the existing NLOP solved using either the classical optimization solution technique or GA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据