4.8 Article

A soft lithographic approach to fabricate patterned microfluidic channels

期刊

ANALYTICAL CHEMISTRY
卷 76, 期 13, 页码 3675-3681

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac035415s

关键词

-

资金

  1. NHLBI NIH HHS [HL 60435] Funding Source: Medline

向作者/读者索取更多资源

The control of surface properties and spatial presentation of functional molecules within a microfluidic channel is important for the development of diagnostic assays and microreactors and for performing fundamental studies of cell biology and fluid mechanics. Here, we present a simple technique, applicable to many soft lithographic methods, to fabricate robust microchannels with precise control over the spatial properties of the substrate. In this approach, the patterned regions were protected from oxygen plasma by controlling the dimensions of the poly(dimethylsiloxane) (PDMS) stamp and by leaving the stamp in place during the plasma treatment process. The PDMS stamp was then removed, and the microfluidic mold was irreversibly bonded to the substrate. The approach was used to pattern a nonbiofouling poly(ethylene glycol)-based copolymer or the polysaccharide hyaluronic acid within microfluidic channels. These nonbiofouling patterns were then used to fabricate arrays of fibronectin and bovine serum albumin as well as mammalian cells. In addition, further control over the deposition of multiple proteins onto multiple or individual patterns was achieved using laminar flow. Also, cells that were patterned within channels remained viable and capable of performing intracellular reactions and could be potentially lysed for analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据