4.8 Article

Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs

期刊

NATURE BIOTECHNOLOGY
卷 22, 期 7, 页码 911-917

出版社

NATURE PORTFOLIO
DOI: 10.1038/nbt988

关键词

-

向作者/读者索取更多资源

Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expression data to demonstrate two functional implications of genome organization: first, chromosomal proximity indicates gene coregulation in prokaryotes independent of relative gene orientation; and second, adjacent bidirectionally transcribed genes (that is,'divergently' organized coding regions) with conserved gene orientation are strongly coregulated. We further demonstrate that such bidirectionally transcribed gene pairs are functionally associated and derive from this a novel genomic context method that reliably predicts links between >2,500 pairs of genes in similar to100 species. Around 650 of these functional associations are supported by other genomic context methods. In most instances, one gene encodes a transcriptional regulator, and the other a nonregulatory protein. In-depth analysis in Escherichia coli shows that the vast majority of these regulators both control transcription of the divergently transcribed target gene/operon and auto-regulate their own biosynthesis. The method thus enables the prediction of target processes and regulatory features for several hundred transcriptional regulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据