4.7 Article

Membrane protein turnover by the m-AAA protease in mitochondria depends on the transmembrane domains of its subunits

期刊

EMBO REPORTS
卷 5, 期 7, 页码 698-703

出版社

WILEY
DOI: 10.1038/sj.embor.7400186

关键词

mitochondria; proteolysis; AAA proteases; membrane protein turnover

向作者/读者索取更多资源

AAA proteases are membrane-bound ATP-dependent proteases that are present in eubacteria, mitochondria and chloroplasts and that can degrade membrane proteins. Recent evidence suggests dislocation of membrane-embedded substrates for proteolysis to occur in a hydrophilic environment; however, next to nothing is known about the mechanism of this process. Here, we have analysed the role of the membrane-spanning domains of Yta10 and Yta12, which are conserved subunits of the hetero-oligomeric m-AAA protease in the mitochondria of Saccharomyces cerevisiae. We demonstrate that the m-AAA protease retains proteolytic activity after deletion of the transmembrane segments of either Yta10 or Yta12. Although the mutant m-AAA protease is still capable of processing cytochrome c peroxidase and degrading a peripheral membrane protein, proteolysis of integral membrane proteins is impaired. We therefore propose that transmembrane segments of m-AAA protease subunits have a direct role in the dislocation of membrane-embedded substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据