4.7 Article

Characterization of hematopoietic progenitor mobilization in protease-deficient mice

期刊

BLOOD
卷 104, 期 1, 页码 65-72

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2003-05-1589

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL60772-01A1, R01 HL47328] Funding Source: Medline
  2. NIAID NIH HHS [R01 AI49261-02] Funding Source: Medline

向作者/读者索取更多资源

Recent evidence suggests that protease release by neutrophils in the bone marrow may contribute to hematopoietic progenitor cell (HPC) mobilization. Matrix metalloproteinase-9 (MMP-9), neutrophil elastase (NE), and cathepsin G (CG) accumulate in the bone marrow during granulocyte colony-stimulating factor (G-CSF) treatment, where they are thought to degrade key substrates including vascular cell adhesion molecule-1 (VCAM-1) and CXCL12. To test this hypothesis, HPC mobilization was characterized in transgenic mice deficient in one or more hematopoietic proteases. Surprisingly, HPC mobilization by G-CSF was normal in MMP-9-deficient mice, NE x CG-deficient mice, or mice lacking dipeptidyl peptidase 1, an enzyme required for the functional activation of many hematopoietic serine proteases. Moreover, combined inhibition of neutrophil serine proteases and metalloproteinases had no significant effect on HPC mobilization. VCAM-1 expression on bone marrow stromal cells decreased during G-CSF treatment of wild-type mice but not NE x CG-deficient mice, indicating that VCAM-1 cleavage is not required for efficient HPC mobilization. G-CSF induced a significant decrease in CXCL12alpha protein expression in the bone marrow of Ne x CG-deficient mice, indicating that these proteases are not required to down-regulate CXCL12 expression. Collectively, these data suggest a complex model in which both protease-dependent and -independent pathways may contribute to HPC mobilization. (C) 2004 by The American Society of Hematology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据