4.8 Article

Toughening of nanoporous glasses using porogen residuals

期刊

NATURE MATERIALS
卷 3, 期 7, 页码 464-469

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat1153

关键词

-

向作者/读者索取更多资源

Nanoporous glasses are inherently brittle materials that become increasingly fragile with increasing porosity. We show that remarkable increases in fracture energy can be obtained from remnants of the porogen molecules used to create the nanoscale pores. The interfacial fracture energy of similar to2.6 J m(-2) for dense methylsilsesquioxane glass films is shown to increase by over one order of magnitude to >30 J m(-2) for glasses containing 50 vol.% porosity. The increased fracture resistance is related to a powerful molecular-bridging mechanism that was modelled using bridging mechanics. The study demonstrates that significant increases in interfacial fracture energy may be obtained using strategies involving controlled decomposition of the porogen molecule during processing of nanoporous glasses. The implications are important for a range of emerging optical, electronic and biological technologies that use nanoporous thin films, but are limited by the degradation of mechanical properties with increasing porosity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据