4.7 Article

Integrated responses of hydraulic architecture, water and carbon relations of western hemlock to dwarf mistletoe infection

期刊

PLANT CELL AND ENVIRONMENT
卷 27, 期 7, 页码 937-946

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1111/j.1365-3040.2004.01199.x

关键词

Arceuthobium spp; Tsuga heterophylla; carbon isotope ratio; leaf-specific conductivity; photosynthesis; stomata; water use efficiency

向作者/读者索取更多资源

Dwarf mistletoe (Arceuthobium spp.) is a hemiparasite that is said to be the single-most destructive pathogen of commercially valuable coniferous trees in many regions of the world. Although its destructive nature is well documented in many respects, its effects on the physiology of its host are poorly understood. In the present study, water and carbon relations were characterized over a range of scale from leaf to whole tree in large (40- to 50-m-tall) individuals of western hemlock (Tsuga heterophylla (Raf.) Sarg.) that were either heavily infected, or uninfected with hemlock dwarf mistletoe (Arceuthobium tsugense). Specific hydraulic conductivity (k(s)) of infected branches was approximately half that of uninfected branches, yet leaf-specific conductivity (k(L)) was similar because leaf area : sapwood area ratios (A(L) : A(S)) of infected branches were lower. Pre-dawn and minimum leaf water potential and stomatal conductance (g(s)) were similar among infected and uninfected trees because adjustments in hydraulic architecture of infected trees maintained k(L) despite reduced k(s). Maximum whole-tree water use was substantially lower in infected trees (approximately 55 kg d(-1)) than in uninfected trees (approximately 90 kg d(-1)) because reduced numbers of live branches in infected trees reduced whole-tree A(L) : A(S) in a manner consistent with that observed in infected branches. Maximum photosynthetic rates of heavily infected trees were approximately half those of uninfected trees. Correspondingly, leaf nitrogen content was 35% lower in infected trees. Foliar delta(13)C values were 2.8parts per thousand more negative in infected than in uninfected individuals, consistent with the absence of stomatal adjustment to diminished photosynthetic capacity. Adjustments in hydraulic architecture of infected trees thus contributed to homeostasis of water transport efficiency and transpiration on a leaf area basis, whereas both carbon accumulation and photosynthetic water use efficiency were sharply reduced at both the leaf and whole-tree scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据