4.5 Article

Subconductance states in OmpF gating

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
卷 1664, 期 1, 页码 100-107

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamem.2004.04.009

关键词

porin; Escherichia coli; bilayer; channel; patch clamp; polyamine

资金

  1. NIAID NIH HHS [AI34905] Funding Source: Medline

向作者/读者索取更多资源

Discrepancies were noted in the published conductance of the Escherichia coli porin OmpF. Results from various papers are hard to compare because of the use of different channel preparations, salt types and concentrations, and electrophysiological techniques (black lipid membrane (BLM) vs. patch clamp). To reconcile these data, we present a side-by-side comparison of OmpF activity studied with the two techniques on the same preparation of pure protein, and in the same low salt concentrations (150 mM KCl). The novel aspect of OmpF porin behavior revealed by this comparison is the ubiquitous existence of states of smaller conductance than the monomeric conductance (subconductance states), regardless of the techniques or experimental conditions used, and the drastic enhancement of subconductance gating by polyamines. Transitions to subconductance states have received little attention in previous publications, in particular when BLM electrophysiology was used. Monomeric closures are rare in recordings at clamped potentials, at least at voltages lower than similar to100-120 mV Most closing activity is in the form of subconductance gating, which becomes more dominant in the presence of spermine, with a more frequent and prolonged occupation of these substates. A discussion of the molecular basis for this hallmark behavior of porin is presented. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据