4.5 Article

Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles

期刊

CANCER BIOLOGY & THERAPY
卷 3, 期 7, 页码 641-650

出版社

LANDES BIOSCIENCE
DOI: 10.4161/cbt.3.7.918

关键词

DNAzyme; tumor targeting; nanoparticle; gene delivery

类别

向作者/读者索取更多资源

nucleic acid sequences specific to oncogene targets such as bcl-2, bcr-abl, and c-myc have been shown to exhibit specific anti-cancer activity in vitro through antigene or antisense activity. Efficient in vivo delivery of oligonucleoticles remains a major limitation for the therapeutic application of these molecules. We report herein on the preparation of transferrin-modified nanoparticles containing DNAzymes (short catalytic single-stranded DNA molecules) for tumor targeting as well as their biodistribution using various methods of administration in the mouse. Linear, beta-cyclodextrin-based polymers are complexed with DNAyzme molecules to form sub-50 nm particles termed polyplexes. The surface properties of the cyclodextrin-containing polyplexes are modified by exploiting the ability of the 13-cyclodextrin substructure and adamantane to form inclusion complexes. Accordingly, conjugates of adamantane with poly(ethylene glycol) (PEG) are prepared and combined with the polyplexes. The adamantane form inclusion complexes with the surface cyclodextrins of the polyplexes to provide a sterically stabilizing layer of PEG. The stabilized polyplexes are also modified with transferrin for increasing targeting to tumor cells expressing transferrin receptors. The preparation, characterization, and in vitro application of these nanoparticles are discussed. The transferrin-polyplexes containing fluorescently-labeled DNAzyme molecules are administered to tumor-bearing nude mice and their biodistribution and clearance kinetics are monitored using a fluorescence imaging system. Four methods of administration are studied: intraperitoneal bolus and infusion, intravenous bolus, and subcutaneous injection. DNAzymes packaged in polyplex formulations are concentrated and retained in tumor tissue and other organs, whereas unformulated DNAzyme is eliminated from the body within 24 hours post-injection. Intravenous and intraperitoneal bolus injections result in the highest fluorescent signal (DNAzyme) at the tumor site. Tumor cell uptake is observed with intravenous bolus injection only, and intracellular delivery requires transferrin targeting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据