4.2 Article

Ecological implications of body composition and thermal capabilities in young Antarctic fur seals (Arctocephalus gazella)

期刊

PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY
卷 77, 期 4, 页码 669-681

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/421749

关键词

-

向作者/读者索取更多资源

In comparison with other homeotherms, young recently weaned marine mammals in high latitudes face exceptional energetic demands when foraging and thermoregulating. Lipids are an important source of energy and a major component of insulation that allows them to meet these demands. To examine the role of lipid stores in a high-latitude pinniped, we measured the body composition and thermoregulatory capabilities of Antarctic fur seal (Arctocephalus gazella) pups and yearlings by using flow-through respirometry and hydrogen isotope dilution. From these data, we constructed a model to examine the importance of postweaning fasting capability in free-ranging young fur seals. Resting metabolic rates were different for pups and yearlings measured in 0.6degreesC water, 10.3degreesC water, and ambient air; however, mass and percent lipid as covariates accounted for the different metabolic responses in pups and yearlings for all treatments. The estimated lower critical temperature for combined pups and yearlings was 14.4degreesC, 10degrees-15degreesC above water temperatures normally experienced by Antarctic fur seals. Modeling predicted that a weaned fur seal pup would survive at sea from 9.8 to 36.2 d before succumbing to starvation. The most likely maximum travel distance within this time constraint suggests that food resources close to the natal rookery are important to first-year survival for this species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据