4.6 Article

A method for radiation-force localized drug delivery using gas-filled lipospheres

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2004.1320741

关键词

-

资金

  1. NCI NIH HHS [R01 CA 76062] Funding Source: Medline
  2. NIBIB NIH HHS [R01 EB 02952] Funding Source: Medline

向作者/读者索取更多资源

We have developed a method using ultrasound and acoustically active lipospheres (AALs) that might be used to deliver bioactive substances to the vascular endothelium. The AALs consist of a small gas bubble surrounded by a thick oil shell and enclosed by an outermost lipid layer. The AALs are similar to ultrasound contrast agents: they can be nondestructively deflected using ultrasound radiation force, and fragmented with high-intensity ultrasound pulses. The lipid-oil complex might be used to carry bioactive substances at high concentrations. An optimized sequence of ultrasound pulses can deflect; the AALs toward a vessel wall then disrupt them, painting their contents across the vascular endothelium. This paper presents results from a series of in vitro and ex vivo experiments demonstrating localization of a fluorescent model drug. In experiments using a human melanoma cell (A2085) monolayer, a specific radiation force-fragment at ion ultrasound pulse sequence increased cell fluorescence more than 10-fold over no ultra-sound or fragmentation pulses alone, and by 50% over radiation force pulses alone. We observe that dye transfer is limited to cells that are in the region of ultrasonic focus, indicating that the application of radiation force pulses to bring the delivery vehicle into proximity with the cell is required for successful adhesion of the vehicle fragments to the cell membrane. We also demonstrate dye transfer from flowing AALs, both in a mimetic vessel and in excised rat cecum. We believe that this method could be successfully used for drug delivery in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据