4.6 Article

Three-scale finite element analysis of heterogeneous media by asymptotic homogenization and mesh superposition methods

期刊

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
卷 41, 期 15, 页码 4121-4135

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2004.02.049

关键词

multi-scale analysis; finite element method; mesh superposition; homogenization; 3D analysis; microstructure; heterogeneity; interface crack

向作者/读者索取更多资源

This paper studies a three-scale computational method that simultaneously considers the microstructure of heterogeneous materials, the macroscopic component, and the fracture origin such as interface or crack. The synergetic application of the asymptotic homogenization and mesh Superposition methods to problems with strong scale mixing is emphasized. The scale gap between the microstructure and the component is very large, but the fracture origin is at the middle scale between them. The overall behavior is analyzed by means of the homogenization of the heterogeneity expressed by the unit cell model, while the fracture origin is modeled directly with the microscopic heterogeneity by another microscopic mesh. The microscopic mesh is superposed onto the macroscopic mesh. This mesh superposition method can analyze the non-periodic microscopic stress at the crack tip under a non-uniform macroscopic strain field with high gradient. Hence, the present three-scale method can accurately focus on the behaviors at arbitrary scale differently from the conventional hierarchical model. A demonstrative example of porous thin film on a substrate with an interface crack was solved and the microscopic stress was analyzed at the crack tip considering the random dispersion of pores and the high gradient of macroscopic strain field. To solve the large-scale 3D problem with approximately 80,000 solid elements, a renumbering technique and the out-of-core skyline solver was employed. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据