4.5 Article

A new method of identifying the site of tyrosyl radicals in proteins

期刊

BIOPHYSICAL JOURNAL
卷 87, 期 1, 页码 582-595

出版社

CELL PRESS
DOI: 10.1529/biophysj.104.041046

关键词

-

向作者/读者索取更多资源

Protein-bound tyrosyl radicals catalyze many important enzymatic reactions. They can also initiate oxidative damage to cells. Here we report a new method of computer simulation of tyrosyl radical electron paramagnetic resonance spectra. The method enables the determination of the rotational conformation of the phenoxyl ring in a radical with unprecedented accuracy (similar to2degrees). When coupled with a new online database, all tyrosine residues in a protein can be screened for that particular conformation. For the first time we show relationships between the spin density on atom C1 (rho(C1)) and the principal g-factors measured by electron paramagnetic resonance spectroscopy (rho(C1) on g(x) is shown to be linear). The new method enables the accurate determination of rho(C1) in all known tyrosyl radicals, evaluates the likelihood of a hydrogen bond, and determines the possibility of a rho(C1) distribution in the radicals. This information, together with the accurately determined rotational conformation, is frequently sufficient to allow for an unambiguous identification of the site of radical formation. The possibility of a similar relationship between rho(C) and g(x) in other radicals, e.g., tryptophanyl, is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据